Abstract
This study investigates the impact of lateral boundary conditions on the propagation and dispersion of locally excited Rossby waves in a zonally periodic, barotropic, quasigeostrophic channel model on the β-plane. We use basic flows with either a linear meridional shear or a jet-like profile. On the southern boundary of the channel we impose either a rigid wall or a radiation condition, whereas the northern sidewall is permeable for Rossby waves. We compare the numerical solutions found for a reflecting southern boundary in a weakly dissipative flow to the solutions obtained from a WKB-analysis for the corresponding unforced nondissipative situation. Furthermore, we compare the generalized Eliassen-Palm flux vectors to the ray paths of Rossby wave packets, obtained from WKB ray tracing. In particular, we focus our investigation on the two-dimensional structure of trapped modal waves and wave trains in a simple linear numerical model. Summarizing our results, we find that along the reflective wall, trapped modal wave structures as well as reflected wave trains occur with characteristics (e.g., wave numbers, turning latitudes) similar to the ones computed using asymptotic methods. In a linear sheared flow wave packets are trapped for all zonal wave numbers in contrast to a jet-like mean flow which has a selective effect on the waves; i.e., a turning latitudes phenomenon between the coast and the flow maximum occurs for short waves, while long waves can propagate freely across the zonal mean flow. This comes out clearly when studying the stream lines of the Eliassen-Palm flux vectors of the numerical model simulations. Furthermore, due to the reflected wave activity, the dispersion of Rossby waves is influenced by the southern boundary condition not only in the vicinity of the border but also in regions away from the boundary. These results appear to be important on the one hand for the existence of trapped Rossby waves in large-scale oceanic shear flows along a zonally oriented coast. And, on the other hand for large-scale boundary waves in conceptional atmospheric channel models which can lead to unwanted resonance effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have