Abstract

A stochastic version of Lotka—Volterra model subjected to real noises is proposed and investigated. The approximate stationary probability densities for both predator and prey are obtained analytically. The original system is firstly transformed to a pair of Itô stochastic differential equations. The Itô formula is then carried out to obtain the Itô stochastic differential equation for the period orbit function. The orbit function is considered as slowly varying process under reasonable assumptions. By applying the stochastic averaging method to the orbit function in one period, the averaged Itô stochastic differential equation of the motion orbit and the corresponding Fokker—Planck equation are derived. The probability density functions of the two species are thus formulated. Finally, a classical real noise model is given as an example to show the proposed approximate method. The accuracy of the proposed procedure is verified by Monte Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call