Abstract

The stationary response of multidegree-of-freedom (MDOF) strongly nonlinear system to fractional Gaussian noise (FGN) with Hurst index 1/2 < H < 1 is studied. First, the system is modeled as FGN-excited and -dissipated Hamiltonian system. Based on the integrability and resonance of the associated Hamiltonian system, the system is divided into five classes: partially integrable and resonant, partially integrable and nonresonant, completely integrable and resonant, completely integrable and nonresonant, and nonintegrable. Then, the averaged fractional stochastic differential equations (SDEs) for five classes of quasi-Hamiltonian systems with lower dimension and involving only slowly varying processes are derived. Finally, the approximate stationary probability densities and other statistics of two example systems are obtained by numerical simulation of the averaged fractional SDEs to illustrate the application and compared with those from original systems to show the advantages of the proposed procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.