Abstract

This paper presents a numerical investigation into the pattern formation mechanism in the Brusselator model focusing on the interplay between the Hopf and Turing bifurcations. The dynamics of a coupled Brusselator model is studied in terms of wavelength and diffusion, thus providing insight into the generation of stationary and oscillatory patterns. The expected asymptotic behavior is confirmed by numerical simulations. The observed patterns include inverse labyrinth oscillations, inverse hexagonal oscillations, dot hexagons and parallel lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.