In this paper, we investigate the spatiotemporal dynamics of a Leslie–Gower predator–prey model incorporating a prey refuge subject to the Neumann boundary conditions. We mainly consider Hopf bifurcation and steady-state bifurcation which bifurcate from the constant positive steady-state of the model. In the case of Hopf bifurcation, by the center manifold theory and the normal form method, we establish the bifurcation direction and stability of bifurcating periodic solutions; in the case of steady-state bifurcation, by the local and global bifurcation theories, we prove the existence of the steady-state bifurcation, and find that there are two typical bifurcations, Turing bifurcation and Turing–Hopf bifurcation. Via numerical simulations, we find that the model exhibits not only stationary Turing pattern induced by diffusion which is dependent on space and independent of time, but also temporal periodic pattern induced by Hopf bifurcation which is dependent on time and independent of space, and spatiotemporal pattern induced by Turing–Hopf bifurcation which is dependent on both time and space. These results may enrich the pattern formation in the predator–prey model.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call