Abstract

This paper presents the planning of a hybrid renewable system with wind turbines and bio-waste energy units along with stationary (i.e., batteries) and mobile (i.e., electric vehicles) energy storage. This model minimizes the cost of construction, maintenance and storage degradation. In this model, the energy supply priority is given to renewable sources. Then the mentioned storage devices are used to cover the gap between the load profile and the renewable generation power. The proposed scheme addresses the uncertainties of loads, renewable power and energy consumption of mobile storage devices. Therefore, robust optimization based on information-gap decision theory (IGDT) is utilized to obtain a robust solution against the prediction error of the aforementioned uncertainties. Also, the hybrid optimization algorithm of honey bee mating and artificial bee colony is derived, showing the optimal solution with low dispersion in the final response. The proposed design is applied to the data of the city of Espoo, Finland. The obtained numerical results show the capability of the proposed design in deriving robust economic planning for the proposed hybrid system. So, the used hybrid solution algorithm is able to obtain the best solution in a lower computation time compared to non-hybrid solvers, and it has a low standard deviation around 0.94 % in the final response. The presence of the aforementioned renewable sources leads to attaining an environment-friendly hybrid system. The optimal performance of the storage devices leads to the robustness of the optimal solution against the maximum error of 18.19 % in the prediction of uncertainties. This occurs considering the smart charging management of mobile storage, but the maximum uncertainty level of 11.12 % holds to non-smart management of these storage devices in the proposed scheme. The energy management of mobile storage devices based on smart (non-smart) charging strategy also reduces (increases) the planning cost of the off-grid system by 7.62 % (39.68 %) compared to their absence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call