Abstract
Artificial Bee Colony (ABC) algorithm was firstly proposed for unconstrained optimization problems on where that ABC algorithm showed superior performance. This paper describes a modified ABC algorithm for constrained optimization problems and compares the performance of the modified ABC algorithm against those of state-of-the-art algorithms for a set of constrained test problems. For constraint handling, ABC algorithm uses Deb's rules consisting of three simple heuristic rules and a probabilistic selection scheme for feasible solutions based on their fitness values and infeasible solutions based on their violation values. ABC algorithm is tested on thirteen well-known test problems and the results obtained are compared to those of the state-of-the-art algorithms and discussed. Moreover, a statistical parameter analysis of the modified ABC algorithm is conducted and appropriate values for each control parameter are obtained using analysis of the variance (ANOVA) and analysis of mean (ANOM) statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.