Abstract
Statins possess pleiotropic effects in several tissues. Among them, their bone anabolic actions have been recently noted. We have proposed that Smad3, a TGF-beta-signaling molecule, is a promoter of bone formation. However, whether statins would affect TGF-beta-Smad3 pathway in osteoblasts is still unknown. The present study was performed to examine the effects of statin on Smad3 expression and cell apoptosis by employing mouse osteoblastic MC3T3-E1 and rat osteoblastic UMR-106 cells. Statins (pitavastatin, mevastatin, and simvastatin) as well as alendronate increased the levels of Smad3 in MC3T3-E1 cells. The effects of pitavastatin on Smad3 levels were observed from 3 hours and later. Pitavastatin induced the expression of TGF-beta, and cycloheximide, a protein synthesis inhibitor, antagonized the increased levels of pitavastatin on Smad3. On the other hand, pitavastatin antagonized dexamethasone- or etoposide-induced apoptosis in a dose-dependent manner, and Smad3 inactivation by dominant negative Smad3 or an inhibition of endogenous TGF-beta action by SB431542 antagonized anti-apoptotic effects of pitavastatin, indicating that pitavastatin suppressed osteoblast apoptosis partly through TGF-beta-Smad3 pathway. In conclusion, the present study has demonstrated for the first time that statin suppressed cell apoptosis partly through TGF-beta-Smad3 pathway in osteoblastic cells.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have