Abstract

We investigate a quasi one-dimensional Bose–Einstein condensate in a harmonic trap with an additional dimple trap (dT) in the center. Within a zero-temperature Gross–Pitaevskii mean-field description we provide a one-dimensional physical intuitive model, which we solve by both a time-independent variational approach and numerical calculations. With this we obtain at first equilibrium results for the emerging condensate wave function which reveal that a dimple trap potential induces a bump or a dip in case of a red- or a blue-detuned Gaussian laser beam, respectively. Afterwards, we investigate how this dT induced bump/dip-imprint upon the condensate wave function evolves for two quench scenarios. At first we consider the generic case that the harmonic confinement is released. During the resulting time-of-flight expansion it turns out that the dT induced bump in the condensate wave function remains present, whereas the dip starts decaying after a characteristic time scale which decreases with increasing blue-detuned dT depth. Secondly, once the red- or blue-detuned dT is switched off, we find that bright shock-waves or gray/dark bi-soliton trains emerge which oscillate within the harmonic confinement with a characteristic frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.