Abstract
Motivated by recent experiments, we investigate a single $^{133}\text{Cs}$ impurity in the center of a trapped $^{87}\text{Rb}$ Bose-Einstein condensate. Within a zero-temperature mean-field description we provide a one-dimensional physical intuitive model which involves two coupled differential equations for the condensate and the impurity wave function, which we solve numerically. With this we determine within the equilibrium phase diagram spanned by the intra- and inter-species coupling strength, whether the impurity is localized at the trap center or expelled to the condensate border. In the former case we find that the impurity induces a bump or dip on the condensate for an attractive or a repulsive Rb-Cs interaction strength, respectively. Conversely, the condensate environment leads to an effective mass of the impurity which increases quadratically for small interspecies interaction strength. Afterwards, we investigate how the impurity imprint upon the condensate wave function evolves for two quench scenarios. At first we consider the case that the harmonic confinement is released. During the resulting time-of-flight expansion it turns out that the impurity-induced bump in the condensate wave function starts decaying marginally, whereas the dip decays with a characteristic time scale which decreases with increasing repulsive impurity-BEC interaction strength. Secondly, once the attractive or repulsive interspecies coupling constant is switched off, we find that white-shock waves or bi-solitons emerge which both oscillate within the harmonic confinement with a characteristic frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.