Abstract
Experimental tests on two full-scale un-reinforced circular tubular Y-joints and two corresponding chord reinforced ones subjected to brace axial compressive loading are carried out. It is found from experimental measurements that the static strength of a tubular Y-joint can be greatly improved by increasing the chord thickness locally near the weld toe. In addition, finite element models (FEM) are also built to analyze the static strength of the above specimens. The numerical results show a good agreement with the experimental results to prove the accuracy and reliability of the FEM. Using the presented FEM, a parametric study is conducted to investigate the effects of some geometrical (α, β, γ and θ) and reinforcing parameters (Tc/T, Lc/d1) on improving the static strength. Based on the investigation, a parametric equation is presented for predicting the static strength of the reinforced circular tubular Y-joint subjected to axial loading, and the accuracy of this parametric equation is then verified through error analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.