Abstract

Abstract Tunnels, pipelines, and other subterranean circular cavities are common components of modern infrastructure. In addition, seismic activities are common in many areas with pipelines, which may put these structures under unknown risk of fracture. A particular risk case of interest can be characterized as a plane strain problem with a circular cavity and crack in an infinite plane under antiplane stress. Antiplane, i.e., mode III, loading has seen less study relative to modes I and II due to the lower risk factor in structures that are especially vulnerable to fracture (e.g., in the automotive and aerospace industries), and the increase in complexity compared to modes I and II. The work here further explores this phenomenon on circular cavities, and particularly, the effect of non-radial cracks on the stress intensity factor via a parametric study. The study introduces a semi-analytical method and also uses commercial finite element software to further expand on the investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.