Abstract

AbstractSuperparamagnetic iron oxide nanoparticles (SPIONs) have become important tools for the imaging and detecting of prevalent diseases for many years. Scientists usually harness their attraction to a static magnetic field (SMF) to increase targeting efficiency and minimize side effects. To prolong blood circulation time and minimize reticuloendothelial system clearance, SPIONs are increasingly designed with a negatively charged surface. Understanding how a SMF affects the SPIONs with a negative surface charge is fundamental to any potential downstream applications of SPIONs as drug delivery carriers and bio‐separation nanoparticles. The goal of our study is to investigate the effect of SMF treatment (204 mT) on the in vitro and in vivo protein corona formed on negatively charged SPIONs. The results reveal that the amount of protein and the composition of protein corona is directly related to the SMF treatment. Compared with the in vivo protein corona, SMF treatment exercises considerable influence on the composition of the in vitro protein corona. The in vitro protein corona formed on SPIONs modulates the secretion of inflammatory cytokines from cells. To the best of our knowledge, this report describes the first demonstration of a SMF as an influencing factor on protein corona formation in vivo. Our results help to elucidate the biological mechanisms of SPIONs with SMF treatment and suggest that the protein corona effect should be considered during the development of a magnetic target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call