Abstract

AbstractViral infections are a significant cause of death globally, resulting in substantial ethical, social, and economic costs. In recent years, the world has experienced the worst epidemic of the current millennium, caused by the Coronavirus 2019, a severe acute respiratory syndrome. This infection can cause severe complications in various organs, such as the stomach, heart, liver, kidney, and brain. Antimicrobial drugs or vaccines can be a practical approach to combating these pathogens. However, there are drug‐resistant or emerging infections that do not have effective drugs or vaccines. Therefore, it is necessary to explore new approaches for early diagnosis, prevention, and effective therapies. So, nanomaterials are widely considered due to their unique properties. This review employs a practical approach to elucidate the role of nanostructures against COVID‐19. Also, the effects and benefits of various types of nanostructures are discussed that have been used to diagnose, prevent, and treat COVID‐19 in recent years. Furthermore, by evaluating different nanostructures, the utilization of biocompatible nanoparticles consisting of selenium and chitosan derivatives is suggested as a promising candidate for industrial use in the fight against COVID‐19. Ultimately, this study can offer insight into the potential applications of nanomaterials in combating emerging microbial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call