Abstract

The apparent friction force and electric contact resistance at the magnetic head-disk interface were measured simultaneously for textured and untextured disks lubricated with perfluoropolyether films of different thicknesses. The initial stick time, representing the time between the application of a driving torque and the initiation of interfacial slip, was determined based on the initial rise of the apparent friction force and the abrupt increase of the electric contact resistance. Relatively thin lubricant films yielded very short initial stick times and low static friction coefficients. However, for a film thickness comparable to the equivalent surface roughness, relatively long initial stick times and high static friction coefficients were observed. The peak value of the apparent friction coefficient was low for thin lubricant films and increased gradually with the film thickness. The variations of the initial stick time, static friction coefficient, and peak friction coefficient with the lubricant film thickness and surface roughness are interpreted in the context of a new physical model of the lubricated interface. The model accounts for the lubricant coverage, effective shear area, saturation of interfacial cavities, limited meniscus effects, and the increase of the critical shear stress of thin liquid films due to the solid-like behavior exhibited at a state of increased molecular ordering. [S0742-4787(00)03101-5]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.