Abstract
SummaryStructural, stratigraphic, and petrophysical uncertainties result in a wide range of geologic interpretations. For fields with a long production and pressure history, 3D dynamic simulations have been very useful in providing feedback to geologic modelers, which results in improved static models. For this study, we developed an integrated static and dynamic workflow to create a range of probabilistic simulation models to forecast dry-gas production under several production scenarios in the Chuchupa field.We selected eight geologic interpretations, representing the range of original gas in place (OGIP) and reservoir geometries determined in the static modeling, to perform dynamic history matches. The OGIP range of the models with very good history matches corresponds closely to the P10 to P90 OGIP range calculated from static modeling.In addition, we calibrated the various models with historical bottomhole and tubinghead flowing pressures and coupled the reservoir model with a network consisting of surface lines and equipment, pipelines from two platforms to the onshore sale-point station, and multistage compression to 1,215 psia. The set of probabilistic models is currently used to evaluate various production and market scenarios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have