Abstract
Human costly punishment plays a vital role in maintaining social norms. Recently, a brain network model is conceptually proposed indicating that the implement of costly punishment depends on a subset of nodes in three high-level networks. This model, however, has not yet been empirically examined from an integrated perspective of large-scale brain networks. Here, we conducted comprehensive graph-based network analyses of resting-state functional magnetic resonance imaging data to explore system-level characteristics of intrinsic functional connectivity among 18 regions related to costly punishment. Nontrivial organizations (small-worldness, connector hubs, and high flexibility) were found that were qualitatively stable across participants and over time but quantitatively exhibited low test-retest reliability. The organizations were predictive of individual costly punishment propensities, which was reproducible on independent samples and robust against different analytical strategies and parameter settings. Moreover, the prediction was specific to system-level network organizations (rather than interregional functional connectivity) derived from positive (rather than negative or combined) connections among the specific (rather than randomly chosen) subset of regions from the three high-order (rather than primary) networks. Collectively, these findings suggest that human costly punishment emerges from integrative behaviors among specific regions in certain functional networks, lending support to the brain network model for costly punishment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have