Abstract

It is argued that a novel control architecture, the Static and Dynamic State (SDS) feedback scheme, which utilizes speed-field tracking, exhibits global stability, and allows on-line tuning by any adaptation mechanism without canceling stability if certain structural conditions are met, can be viewed as a model of basal ganglia-thalamocortical loops since (1) the SDS scheme predicts the neuronal groups that fit neuronal classification in the supplementary motor area, the motor cortex and the putamen, (2) the structural stability conditions require parallel channels, a feature that these loops provide, and (3) the SDS scheme predicts two major disorders that can be identified as Parkinson's and Huntington's diseases. Simulations suggests that the basal ganglia work outside the realm of the stability condition allowed by the robustness of the scheme and required for increased computation speeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.