Abstract

Small-strain foundation response has mostly been studied analytically, with limited experimental verification against 1g physical model tests. This paper revisits the problem of small-strain foundation response, conducting a series of centrifuge model tests, aiming to eliminate the limitations of 1g testing. A centrifuge modelling technique is developed, combining static pushover and dynamic impulse testing for similar systems. To allow for derivation of meaningful insights, a novel procedure for in-flight measurement of the distribution of shear modulus with depth is also developed. The latter combines spectral analysis of surface waves (SASW) measurement of the shear modulus G0 at the surface, and estimation of the distribution of the shear modulus G with depth using acceleration measurements in shaking tests. A novel centrifuge tube–actuator is developed and employed to discharge spherical projectiles against single-degree-of-freedom models lying on shallow foundations on sand. This allows generating dynamic impulse excitation, which is used to measure the small-strain dynamic rocking stiffness. The developed actuator is versatile, and was also used for in-flight SASW testing. The centrifuge model tests are shown to confirm the widely used and well-known formulas. This good agreement can also be seen as a confirmation of the validity of the developed experimental techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call