Abstract

Effective building energy efficiency requires understanding fenestration’s role in regulating indoor temperatures. Therefore, this study investigates the impact of integrating static glazing with dynamic coatings on building energy efficiency and indoor comfort in a lightweight structure situated in a semi-arid climate. Employing a comprehensive numerical model developed using EnergyPlus and Radiance tools, various static commercial glass window configurations are evaluated to assess their effects on energy consumption, thermal and visual comfort, and economic and environmental considerations. This analysis includes assessments of thermal comfort using PMV and PPD indicators and evaluations of visual comfort based on daylighting and glare metrics. The findings highlight the advantages of incorporating thermochromic and electrochromic films, demonstrating significant improvements in building energy efficiency and interior thermal and visual comfort. Notably, double glazing emerges as the most economically efficient and environmentally viable option, resulting in a reduction of emissions by 1522.38 kgCO2/year, with a payback period of 12.86 years. Furthermore, combining thermochromic and electrochromic coatings with optimal static glazing leads to a remarkable 26 % reduction in energy consumption. These results underscore the potential of dynamic coatings to enhance building energy performance while ensuring occupant comfort. This research approach provides valuable insights into sustainable building design, emphasizing the integrated impact of glazing solutions on energy use, comfort, and environmental sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call