Abstract

The aim of this present work is to study the higher-order modelling of a cylindrical nano-shell resting on Pasternak’s foundation based on nonlocal elasticity theory. Third-order shear deformation theory is developed for modelling the kinematic relations, and nonlocal elasticity theory is developed for size-dependent analysis. The principle of virtual work is applied to derive static governing equations. The solution is presented for simply supported boundary conditions in terms of various important parameters. The numerical results including lower- and higher-order longitudinal and radial displacements are presented in terms of nonlocal parameter, two parameters of Pasternak’s foundation and some dimensionless geometric parameters such as length-to-radius ratio and length-to-thickness ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call