Abstract

This paper uses higher-order shear deformation theory and modified couple stress theory (MCST) to the electroelastic results of FG micro-shell integrated with piezoelectric thin sheets subjected to electrical and mechanical loads rested on Pasternak's foundation. Third-order shear deformation theory (TSDT) is used for the description of the displacement field. Effect of micro-size is applied using MCST with the introduction of one micro-length scale parameter. Governing equations are derived based on the principle of virtual work. Micro-shell is composed of a FG micro core and two piezoelectric hollow shells. The numerical results are obtained for the simply-supported boundary conditions. Longitudinal and radial displacements are presented in terms of important parameters such as applied electric potentials, micro length scale parameter, dimensionless geometric parameters and two parameters of Pasternak's foundation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.