Abstract

This study proposes a new deterministic off-line identification method that obtains a state-space model using input and output data with steady state values. This method comprises of two methods: Zeroing the 0∼N-tuple integral values of the output error of single-input single-output transfer function model (Kosaka et al., 2004) and Ho-Kalman’s method (Zeiger and McEwen, 1974). Herein, we present a new method to derive a matrix similar to the Hankel matrix using multi-input and multi-output data with steady state values. State space matrices A, B, C, and D are derived from the matrix by the method shown in Zeiger and McEwen, 1974 and Longman and Juang, 1989. This method’s utility is that the derived state-space model is emphasized in the low frequency range under certain conditions. Its salient feature is that this method can identify use of step responses; consequently, it is suitable for linear mechanical system identification in which noise and vibration are unacceptable. Numerical simulations of multi-input multi-output system identification are illustrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call