Abstract
The majority of carbide cutting tools in use today employ hard coatings because coatings offer proven benefits in terms of tool life and machining performance. Continuing development of the chemical vapor deposition (CVD) coating process, the most widely used technique, has produced complex multilayer coatings tailored for specific applications and workpiece materials. These coatings include alumina layers of different crystal structures, and TiCN layers applied by high- or moderate-temperature (MT-CVD) processes. Over the last decade, coatings applied by physical vapor deposition (PVD) have gained acceptance in applications requiring sharp edges or those featuring interrupted cuts. Originally limited to TiN coatings, the PVD offering now includes TiCN and TiA1N coatings which provide better high-speed performance and increased abrasive wear resistance. In the area of superhard coatings, improvements in deposition processes and coating adhesion have resulted in diamond-coated carbide tools that have begun to play an important role in machining non-ferrous and non-metallic materials. This paper presents the state of the art in hard coatings for carbide cutting tools including discussion of coating characteristics and applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have