Abstract

AbstractIn recent decades, the constitutive modelling for frozen soils has attracted remarkable attention from scholars and engineers due to the continuously growing constructions in cold regions. Frozen soils exhibit substantial differences in mechanical behaviours compared to unfrozen soils, due to the presence of ice and the complexity of phase changes. Accordingly, it is more difficult to establish constitutive models to reasonably capture the mechanical behaviours of frozen soils than unfrozen soils. This study attempts to present a comprehensive review of the state of the art of constitutive models for frozen soils, which is a focal topic in geotechnical engineering. Various constitutive models of frozen soils under static and dynamic loads are summarised based on their underlying theories. The advantages and limitations of the models are thoroughly discussed. On this basis, the challenges and potential future research possibilities in frozen soil modelling are outlined, including the development of open databases and unified constitutive models with the aid of advanced techniques. It is hoped that the review could facilitate research on describing the mechanical behaviours of frozen soils, and promote a deeper understanding of the thermo-hydro-mechanical (THM) coupled process occurring in cold regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call