Abstract

Tracking and controlling electron dynamics in the interior of atoms, molecules as well as in solids is at the forefront of modern ultrafast science [1–5]. Time-resolved studies of these dynamics require attosecond temporal resolution that is provided by an ensemble of techniques consolidated under the term “attosecond metrology” [6,7]. This work reports the development and commissioning of what we refer to as next-generation attosecond beamline technology: the AS-1 attosecond beamline at the Max-Planck Institute of Quantum Optics. It consists of a phase-stabilized few-cycle laser system, for the generation of XUV radiation, and modules tailored for the spectral filtering and isolation of attosecond pulses as well as for their temporal characterization. The setup produces the shortest attosecond pulses demonstrated to date and combines them with advanced spectroscopic instrumentation (electron-, ion- and XUV-spectrometers). These pulses serve as temporally confined trigger events (attosecond streaking and tunneling spectroscopy) or probe pulses (attosecond absorption and photoelectron spectroscopy) enabling attosecond chronoscopy to be applied to a broad range of systems belonging to the microcosm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.