Abstract

Electroencephalography (EEG) is a technique for measuring brain activity that is widely used in neuroscience research. Event-related potentials (ERPs) in the EEG make it possible to study sensory and cognitive processes in the brain. Previous reports have shown that aerobic exercise can have an impact on components of ERPs such as amplitude and latency. However, they focused on the measurement of ERPs after exercise. The aim of this systematic review was to investigate the feasibility of measuring ERPs during cycling, and to assess the impact of cycling on ERPs during cycling. We followed the PRISMA guidelines for new systematic reviews. To be eligible, studies had to include healthy adults and measure ERPs during cycling. All articles were found using Google Scholar and by searching references. Data extracted from the studies included: objectives of ERP studies, ERP paradigm, EEG system, study population data, exercise characteristics (duration, intensity, pedaling cadence), and ERP and behavioral outcomes. The Cochrane Risk of Bias 2 tool was used to assess study bias. Twenty studies were selected. The effect of cycling on ERPs was mainly based on a comparison of P3 wave amplitude between cycling and resting states, using an attentional task. The ERP paradigm most often used was the auditory oddball task. Exercise characteristics and study methods varied considerably. It is possible to measure ERPs during cycling under conditions that are likely to introduce more artifacts, including a 3-h athletic exercise session and cycling outdoors. Secondly, no assessment of the effect of cycling on ERPs was possible, because the methods differed too widely between studies. In addition, the theories proposed to explain the results sometimes seemed to contradict each other. Although most studies reported significant results, the direction of the effects was inconsistent. Finally, we suggest some areas for improvement for future studies on the subject.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.