Abstract

In the past few years, there has been growing interest in the development of silicon sensors able to simultaneously measure accurately the time of passage and the position of impinging charged particles. In this contribution, a review of the progresses in the design of UFSD (Ultra-Fast Silicon Detectors) sensors, manufactured at the FBK (Fondazione Bruno Kessler) Foundry, aiming at tracking charged particles in 4 dimensions, is presented. The state-of-the-art UFSD sensors, with excellent timing capability, are planned to be used in both ATLAS and CMS experiments detector upgrade, in order to reduce the background due to the presence of overlapping events in the same bunch crossing.The latest results on sensors characterization including time resolution, radiation resistance and uniformity of the response are here summarized, pointing out the interplay between the design of the gain layer and the UFSD performances. The research is now focusing on the maximization of the sensor fill factor, to be able to reduce the pixel size, exploring the implementation of shallow trenches for the pixel isolation and the development of resistive AC-coupled UFSD sensors. In conclusion, a brief review on research paths tailored for detection of low energy X-rays or for low material budget applications is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.