Abstract
State-of-charge (SOC) is a relative quantity that describes the ratio of the remaining capacity to the present maximum available capacity. Accurate SOC estimation is essential for a battery-management system. In addition to informing the user of the expected usage until the next recharge, it is crucial for improving the utilization efficiency and service life of the battery. This study focuses on applying deep-learning techniques, and specifically convolutional residual networks, to estimate the SOC of lithium-ion batteries. By stacking the values of multiple measurable variables taken at many time instants as the model inputs, the process information for the voltage or current generation, and their interrelations, can be effectively extracted using the proposed convolutional residual blocks, and can simultaneously be exploited to regress for accurate SOCs. The performance of the proposed network model was evaluated using the data obtained from a lithium-ion battery (Panasonic NCR18650PF) under nine different driving schedules at five ambient temperatures. The experimental results demonstrated an average mean absolute error of 1.260%, and an average root-mean-square error of 0.998%. The number of floating-point operations required to complete one SOC estimation was 2.24 × 106. These results indicate the efficacy and performance of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.