Abstract
Lithium-ion (Li-ion) battery state of charge (SOC) estimation is important for electric vehicles (EVs). The model-based state estimation method using the Kalman filter (KF) variants is studied and improved in this paper. To establish an accurate discrete model for Li-ion battery, the extreme learning machine (ELM) algorithm is proposed to train the model using experimental data. The estimation of SOC is then compared using four algorithms: extended Kalman filter (EKF), unscented Kalman filter (UKF), adaptive extended Kalman filter (AEKF) and adaptive unscented Kalman filter (AUKF). The comparison of the experimental results shows that AEKF and AUKF have better convergence rate, and AUKF has the best accuracy. The comparison from the radial basis function neural network (RBF NN) model also verifies that the ELM model has lighter computation load and smaller estimation error in SOC estimation process. In general, the performance of Li-ion battery SOC estimation is improved by the AUKF algorithm applied on the ELM model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have