Abstract

In this paper, the novel leader-following tracking control method is proposed for mobile robots, which consists estimation technique of the speed of the leader robot (LR), and a parameter-dependent controller for the follower robot (FR). To estimate the speed of LR, a novel Physics Informed Machine Learning (PIML) is proposed to learn the dynamics of the state observer via the error state model. The dynamics of the state observer in PIML play a significant role for stable learning and state estimation of uncertain models. The gain of the parameter-dependent controller is determined by the convex combination of the robust control technique via the polytopic model. Finally, the tracking performance of the proposed method is verified through the simulation and experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.