Abstract
Some algorithms make critical internal use of updatable state, even though their external specification is purely functional. Based on earlier work on monads, we present a way of securely encapsulating stateful computations that manipulate multiple, named, mutable objects, in the context of a non-strict, purely-functional language. The security of the encapsulation is assured by the type system, using parametricity. The same framework is also used to handle input/output operations (state changes on the external world) and calls to C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.