Abstract

In this paper, a composite control method combining repetitive control (RC) and deadbeat predictive control (DPC) is proposed to reduce the harmonic content of output voltage and improve the quality of voltage waveform, in order to solve the problem of voltage distortion caused by linear and nonlinear loads at the common grid-connected point of microgrid. First, the mathematical model of three-phase Z-source inverters is established, and the model is transformed into a state space expression. Then, Lyapunov’s theory is used to find the design conditions of the state feedback control law based on linear matrix inequality. Finally, the parameters of the controller are solved by linear matrix inequality (LMI), and the parameter design of the improved repetitive controller is optimized. Furthermore, the system response speed is improved, and the system stability and robustness are guaranteed by combining the deadbeat predictive control technology. The simulation and experimental results verify the accuracy and superiority of the proposed deadbeat predictive repetitive control (DPRC) based on parameter optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.