Abstract

This paper aims to develop a state estimate-based friction fuzzy modeling and robust adaptive control techniques for controlling a class of multiple degrees of freedom (MDOF) mechanical systems. A fuzzy state estimator is proposed to estimate the state variables for friction modeling. Under some conditions, it is shown that such a state estimator guarantees the uniformly ultimate boundedness (UUB) of the estimate error. Based on system input–output data and our proposed state estimator, a robust adaptive fuzzy output-feedback control scheme is presented to control multiple degrees of freedom system with friction. The adaptive fuzzy output-feedback controller can guarantee the uniformly ultimate boundedness of the tracking error of the closed-loop system. A typical mass-spring system is employed in our simulation studies. The results demonstrate that our proposed techniques in this paper have good potential in controlling nonlinear systems with uncertain friction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call