Abstract
This work is concerned with tree tensor network operators (TTNOs) for representing quantum Hamiltonians. We first establish a mathematical framework connecting tree topologies with state diagrams. Based on these, we devise an algorithm for constructing a TTNO given a Hamiltonian. The algorithm exploits the tensor product structure of the Hamiltonian to add paths to a state diagram, while combining local operators if possible. We test the capabilities of our algorithm on random Hamiltonians for a given tree structure. Additionally, we construct explicit TTNOs for nearest neighbour interactions on a tree topology. Furthermore, we derive a bound on the bond dimension of tensor operators representing arbitrary interactions on trees. Finally, we consider an open quantum system in the form of a Heisenberg spin chain coupled to bosonic bath sites as a concrete example. We find that tree structures allow for lower bond dimensions of the Hamiltonian tensor network representation compared to a matrix product operator structure. This reduction is large enough to reduce the number of total tensor elements required as soon as the number of baths per spin reaches 3.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have