Abstract

The present study is devoted to the investigation of the dilatancy behaviour of a fine sand based on hollow cylinder tests. Medium and dense samples were tested at a constant average γ = 1, 2, 3 and 4%. Dilatancy curves along with shear wave velocity measurements to investigate the influence of the shear strain amplitude γampl in the shear modulus degradation curve are presented and discussed. The measured stress and strain paths were used to compare the performance of four advanced constitutive models especially in describing the dilatancy behaviour of sand. From the perspective of their constitutive equations, the differences between the simulations with various material models are examined. It may be concluded that all four models allow a proper prediction of torsional shear tests as long as a proper calibration of the material parameters is secured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.