Abstract

The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence. The single Er3+ in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously. However, to entangle distant Er3+ ions through photonic connections, the emission frequency of individual Er3+ in solid-state matrix must be the same, which is challenging because the emission frequency of Er3+ depends on its local environment. Herein, we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er3+ in a Y2SiO5 crystal by employing electrodes interfaced with a silicon photonic crystal cavity. We obtain a Stark shift of 182.9±0.8 MHz, which is approximately 27 times of the optical emission linewidth, demonstrating promising applications in tuning the emission frequency of independent Er3+ into the same spectral channels. Our results provide a useful solution for construction of scalable quantum networks based on single Er3+ and a universal tool for tuning emission of individual rare-earth ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.