Abstract
Atomic defects in the solid state are a key component of quantum repeater networks for long-distance quantum communication1. Recently, there has been significant interest in rare earth ions2-4, in particular Er3+ for its telecom band optical transition5-7 that allows long-distance transmission in optical fibres. However, the development of repeater nodes based on rare earth ions has been hampered by optical spectral diffusion, precluding indistinguishable single-photon generation. Here, we implant Er3+ into CaWO4, a material that combines a non-polar site symmetry, low decoherence from nuclear spins8 and is free of background rare earth ions, to realize significantly reduced optical spectral diffusion. For shallow implanted ions coupled to nanophotonic cavities with large Purcell factor, we observe single-scan optical linewidths of 150 kHz and long-term spectral diffusion of 63 kHz, both close to the Purcell-enhanced radiative linewidth of 21 kHz. This enables the observation of Hong-Ou-Mandel interference9 between successively emitted photons with a visibility of V = 80(4)%, measured after a 36 km delay line. We also observe spin relaxation times T1,s = 3.7 s and T2,s > 200 μs, with the latter limited by paramagnetic impurities in the crystal instead of nuclear spins. This represents a notable step towards the construction of telecom band quantum repeater networks with single Er3+ ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.