Abstract
Enrichment of ultrafine liberated valuable minerals from their associated gangue phases is one of the emerging investigation topics within mineral processing and recycling. Using green flotation reagents and turning processes into eco-friendly systems is also one of the challenges in the green transition of ore beneficiation plants. Starch and Tanin as biodegradable depressants for hematite depression have been commercially used in various iron ore processing plants. However, their depression effects on ultrafine particles were not systemically assessed and compared. To fill this gap, this investigation examined the effects of starch, tannin, their mixtures (different ratios), and their different conditioning sequence on the floatability of ultrafine quartz and hematite (− 15 µm). Since the macromolecular polymer of these biodegradable depressants can bind particles together and flocculate them, turbidity analyses were used to assess their optimum ratio for hematite depression without affecting quartz floatability. Turbidity analyses provided a mixture of tannin and starch might enhance the flotation separation of quartz from hematite. Starch could flocculate ultrafine hematite particles, while tannin could disperse ultrafine quartz particles. Floatability experiments indicated that starch had the highest performance in hematite depression (lowest effect on quartz particles) compared to other conditions. Surface analyses (zeta potential and FTIR) proved floatability outcomes and highlighted starch had stronger adsorption on the hematite surface than tannin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.