Abstract

Aqueous Zn-I flow batteries utilizing low-cost porous membranes are promising candidates for high-power-density large-scale energy storage. However, capacity loss and low Coulombic efficiency resulting from polyiodide cross-over hinder the grid-level battery performance. Here, we develop colloidal chemistry for iodine-starch catholytes, endowing enlarged-sized active materials by strong chemisorption-induced colloidal aggregation. The size-sieving effect effectively suppresses polyiodide cross-over, enabling the utilization of porous membranes with high ionic conductivity. The developed flow battery achieves a high-power density of 42 mW cm−2 at 37.5 mA cm−2 with a Coulombic efficiency of over 98% and prolonged cycling for 200 cycles at 32.4 Ah L−1posolyte (50% state of charge), even at 50 °C. Furthermore, the scaled-up flow battery module integrating with photovoltaic packs demonstrates practical renewable energy storage capabilities. Cost analysis reveals a 14.3 times reduction in the installed cost due to the applicability of cheap porous membranes, indicating its potential competitiveness for grid energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.