Abstract
Star-shaped porphyrin-based small-molecule donors (SMDs) with all four-directional substitution have been rarely reported. Herein, we designed and synthesized two SMDs, namely ZnP-4PhDPP and ZnP-4ThDPP, by employing zinc porphyrin as the core, thiophene-capped diketopyrrolopyrrole (DPP) as the four conjugated arms via a phenyl or thienyl linking bridge. The varied linker resulted in differences in absorption, energy level and molecular geometry. Blended with Y6 as acceptor, all-small-molecule devices achieved power conversion efficiency (PCE) of 6.86% and 6.93% for ZnP-4PhDPP and ZnP-4ThDPP, upon different device post-treatment conditions, respectively. The more orthogonal spatial configuration of ZnP-4ThDPP was favorable for constructing additional charge pathways, which was in accord with the results from photoluminescence quenching efficiency, charge transport ability and thickness sensitivity evaluation. The results in this work enriched the category of star-shaped porphyrin-derivatives and might afford guidelines into the structure-property correlation of various linkers-based small-molecule photovoltaic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.