Abstract

In recent years, research on the development of organic solar cells has increased significantly. For the last few years, machine learning (ML) has been gaining the attention of the scientific community working on organic solar cells. Herein, ML is used to screen small molecule donors for organic solar cells. ML models are fed by molecular descriptors. Various ML models are employed. The predictive capability of a support vector machine is found to be higher (Pearson's coefficient = 0.75). The best small donors with fullerene acceptors are selected to pair with Y6. New small molecule donors are also designed taking into account quantum chemistry principles, using building units that are searched through similarity analysis. Their energy levels and power conversion efficiencies (PCEs) are predicted. Efficient small molecule donors with PCE > 13% are selected. This design and discovery pipeline provides an easy and fast way to select potential candidates for experimental work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.