Abstract

This study introduces a new symmetrical hydraulic piezoelectric energy harvester. By integrating theoretical analysis, simulation, and empirical testing, the research delves into the energy‐harvesting potential of monolithic single‐side output, monolithic two‐side parallel‐connected output, stacked one‐side parallel‐connected output, and stacked two‐side parallel‐connected output under varying parameter configurations. Additionally, it elucidates the energy dissipation occurring during the energy‐harvesting process of stacked piezoelectric disks. It has been observed that the primary determinant of voltage is the amplitude of pulsation, not the static pressure. Concurrently, the study also addresses the consistency of power generation between multiple channels. A study is made on whether there is a proportional relationship between single‐channel power generation and multi‐channel power generation. The root mean square (RMS) voltage of each connection sharply rises with resistance from 2 to 100 KΩ. It is found that the performance of parallel connection of monolithic piezoelectric disk is better than that of other connection methods. At 3 MPa and 100 Hz, the optimal resistance is 16 KΩ, yielding a maximum average power of 1155.63 μW and an optimal power density of 1.774 μW (bar mm3)−1. Consequently, the research offers a novel approach to addressing the issue of sustainable energy supply for low‐power electronic devices and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.