Abstract

We report a comprehensive study of the electronic and magnetic properties of a star-shaped molecule comprising a MnII4O6 core. One feature of this compound is weak magnetic coupling constants compared to other similar polyoxo compounds. This leads to complicated low-lying magnetic states in which the ground state is not well separated from the upper-lying states, yielding a high-spin molecule with a giant magnetic moment of up to 20 microB/formula unit. We apply X-ray diffraction and magnetometry as well as other X-ray spectroscopic techniques, namely, X-ray photoelectron spectroscopy, X-ray magnetic circular dichroism, and X-ray emission spectroscopy. We compare our experimental results with ab initio electronic band structure calculations as well as the localized electronic structure around the Mn2+ ions with charge-transfer multiplet calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.