Abstract
AbstractRecent research and development interests deal with metasurfaces for wireless systems beyond their consideration as intelligent tunable reflectors. Among the latest proposals is the simultaneously transmitting (a.k.a. refracting) and reflecting reconfigurable intelligent surface (STAR‐RIS) which intends to enable bidirectional indoor‐to‐outdoor, and vice versa communications thanks to its additional refraction capability. This double functionality provides increased flexibility in concurrently satisfying the quality‐of‐service requirements of users located at both sides of the metasurfaces, for example, the achievable data rate and localisation accuracy. The authors focus on STAR‐RIS‐empowered simultaneous indoor and outdoor three‐dimensional (3D) localisation, and study the fundamental performance limits via Fisher information analyses and Cramér Rao lower bounds (CRLBs). The authors also devise an efficient localisation algorithm based on an off‐grid compressive sensing (CS) technique relying on atomic norm minimisation (ANM). The impact of the training overhead, the power splitting at the STAR‐RIS, the power allocation between the users, the STAR‐RIS size, the imperfections of the STAR‐RIS‐to‐BS channel, as well as the role of the multi‐path components on the positioning performance are assessed via extensive computer simulations. It is theoretically demonstrated that high‐accuracy, up to centimetre level, 3D localisation can be simultaneously achieved for indoor and outdoor users, which is also accomplished via the proposed ANM‐based estimation algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.