Abstract

We present the results of SPH simulations in which two clouds, each having mass $M_{_{\rm{o}}}\!=\!500\,{\rm M}_{_\odot}$ and radius $R_{_{\rm{o}}}\!=\!2\,{\rm pc}$, collide head-on at relative velocities of $\Delta v_{_{\rm{o}}} =2.4,\;2.8,\;3.2,\;3.6\;{\rm and}\;4.0\,{\rm km}\,{\rm s}^{-1}$. There is a clear trend with increasing $\Delta v_{_{\rm{o}}}$. At low $\Delta v_{_{\rm{o}}}$, star formation starts later, and the shock-compressed layer breaks up into an array of predominantly radial filaments; stars condense out of these filaments and fall, together with residual gas, towards the centre of the layer, to form a single large-$N$ cluster, which then evolves by competitive accretion, producing one or two very massive protostars and a diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is reminiscent of the hub and spokes systems identified recently by observers. At high $\Delta v_{_{\rm{o}}}$, star formation occurs sooner and the shock-compressed layer breaks up into a network of filaments; the pattern of filaments here is more like a spider's web, with several small-$N$ clusters forming independently of one another, in cores at the intersections of filaments, and since each core only spawns a small number of protostars, there are fewer ejections of protostars. As the relative velocity is increased, the {\it mean} protostellar mass increases, but the {\it maximum} protostellar mass and the width of the mass function both decrease. We use a Minimal Spanning Tree to analyse the spatial distributions of protostars formed at different relative velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call