Abstract
We investigate encounters between giant molecular clouds (GMCs) and star clusters. We propose a single expression for the energy gain of a cluster due to an encounter with a GMC, valid for all encounter distances and GMC properties. This relation is verified with N-body simulations of cluster-GMC encounters and excellent agreement is found. The fractional mass loss from the cluster is 0.25 times the fractional energy gain. This is because 75% of the injected energy goes to the velocities of escaping stars, that are higher than the escape velocity. We derive an expression for the cluster disruption time (t_dis) based on the mass loss from the simulations, taking into account the effect of gravitational focusing by the GMC. The disruption time depends on the cluster mass (M_c) and half-mass radius (r_h) as t_dis=2.0 S (M_c/10^4 M_sun)(3.75 pc/r_h)^3 Gyr, with S=1 for the solar neighbourhood and inversely proportional to the GMC density. The observed shallow relation between cluster radius and mass gives t_dis a power-law dependence on the mass with index 0.7, similar to that found from observations and from simulations of clusters dissolving in tidal fields (0.62). The constant of 2.0 Gyr is about a factor of 3.5 shorter than found from earlier simulations of clusters dissolving under the combined effect of galactic tidal field and stellar evolution. It is somewhat higher than the observationally determined value of 1.3 Gyr. It suggests, however, that the combined effect of tidal field and encounters with GMCs can explain the lack of old open clusters in the solar neighbourhood. GMC encounters can also explain the (very) short disruption time that was observed for star clusters in the central region of M51, since there rho_n is an order of magnitude higher than in the solar neighbourhood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.