Abstract

Staphylococcus aureus colonizes the skin of atopic dermatitis (AD) individuals, but the impact of its enterotoxins on the chronic activation of CD4+ T cells demands further analysis. We aimed to analyze the CD4+ T cell anergy profile and their phenotypic and functional features through differential expression of cellular activation markers, cytokine production and response to staphylococcal enterotoxin A (SEA). A panel of 84 genes relevant to T cell anergy was assessed by PCR array in FACS-sorted CD4+ T cells, and the most prominent genes were validated by RT-qPCR. We evaluated frequencies of circulating CD4+ T cells secreting single or multiple (polyfunctional) cytokines (IL-17A, IL-22, TNF, IFN-γ, and MIP-1β) and expression of activation marker CD38 in response to SEA stimulation by flow cytometry. Our main findings indicated upregulation of anergy-related genes (EGR2 and IL13) promoted by SEA in AD patients, associated to a compromised polyfunctional response particularly in CD4+CD38+ T cells in response to antigen stimulation. The pathogenic role of staphylococcal enterotoxins in adult AD can be explained by their ability to downmodulate the activated effector T cell response, altering gene expression profile such as EGR2 induction, and may contribute to negative regulation of polyfunctional CD4+ T cells in these patients.

Highlights

  • Staphylococcus aureus colonizes the skin of atopic dermatitis (AD) individuals, but the impact of its enterotoxins on the chronic activation of CD4+ T cells demands further analysis

  • Considering the chronic nature of S. aureus colonization and the known defects in effector immune response in AD patients, we propose that staphylococcal enterotoxins can drive CD4+ T cell from AD patients to a tolerogenic profile

  • As illustrated in the heatmap (Fig. 1a) and the volcano plots (Supplementary Fig. S1), a multitude of anergy related genes are upregulated in AD patients, including the classical AD associated ones IL4 and IL13; the last one has been validated by conventional qPCR (Fig. 1c)

Read more

Summary

Introduction

Staphylococcus aureus colonizes the skin of atopic dermatitis (AD) individuals, but the impact of its enterotoxins on the chronic activation of CD4+ T cells demands further analysis. We aimed to analyze the CD4+ T cell anergy profile and their phenotypic and functional features through differential expression of cellular activation markers, cytokine production and response to staphylococcal enterotoxin A (SEA). We evaluated frequencies of circulating CD4+ T cells secreting single or multiple (polyfunctional) cytokines (IL-17A, IL-22, TNF, IFN-γ, and MIP-1β) and expression of activation marker CD38 in response to SEA stimulation by flow cytometry. The pathogenic role of staphylococcal enterotoxins in adult AD can be explained by their ability to downmodulate the activated effector T cell response, altering gene expression profile such as EGR2 induction, and may contribute to negative regulation of polyfunctional CD4+ T cells in these patients. Cutaneous S. aureus is accomplished of inducing differentiation of Gr1+CD11b+ myeloid-derived suppressor cells, leading to immune suppression of T cell activation in skin, and decreased numbers of splenic CD4+ and CD8+ T cells in mouse models[21]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call