Abstract
PurposeTo compare the diagnostic performance and interobserver agreement of three reporting systems for computed tomography findings in coronavirus disease 2019 (COVID-19), namely the COVID-19 Reporting and Data System (CO-RADS), COVID-19 Imaging Reporting and Data System (COVID-RADS), and Radiological Society of North America (RSNA) expert consensus statement, in a low COVID-19 prevalence area. MethodThis institutional review board approval single-institutional retrospective study included 154 hospitalized patients between April 1 and May 21, 2020; 26 (16.9 %; 63.2 ± 14.1 years, 21 men) and 128 (65.7 ± 16.4 years, 87 men) patients were diagnosed with and without COVID-19 according to reverse transcription-polymerase chain reaction results, respectively. Written informed consent was waived due to the retrospective nature of the study. Six radiologists independently classified chest computed tomography images according to each reporting system. The area under receiver operating characteristic curves, sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and interobserver agreements were calculated and compared across the systems using paired t-test and kappa analysis. ResultsMean area under receiver operating characteristic curves were as follows: CO-RADS, 0.89 (95 % confidence interval [CI], 0.87–0.90); COVID-RADS, 0.78 (0.75–0.80); and RSNA expert consensus statement, 0.88 (0.86–0.90). Average kappa values across observers were 0.52 (95 % CI: 0.45–0.60), 0.51 (0.41–0.61), and 0.57 (0.49–0.64) for CO-RADS, COVID-RADS, and RSNA expert consensus statement, respectively. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were the highest at 0.71, 0.53, 0.72, 0.96, and 0.56 in the CO-RADS; 0.56, 0.31, 0.54, 0.95, and 0.35 in the COVID-RADS; 0.83, 0.49, 0.61, 0.96, and 0.55 in the RSNA expert consensus statement, respectively. ConclusionsThe CO-RADS exhibited the highest specificity, positive predictive value, which are especially important in a low-prevalence population, while maintaining high accuracy and negative predictive value, demonstrating the best performance in a low-prevalence population.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have