Abstract

Background: Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra. SPECT imaging using technetium-99m [99mTc] labeled trodat is the choice of imaging to differentiate PD from its other forms like drug-induced PD. Aims and Objectives: The main objective of our study was to prepare in-house sterile formulation of [99mTc]Tc-trodat and use in clinics. Materials and Methods: The labeling of trodat was standardized using glucoheptonate sodium salt (GHA), stannous chloride dihydrate (in 0.05 N HCl), and ethylenediaminetetraacetic acid (Na-EDTA). The preparation was mixed and autoclaved at 15 psi for 15 min. The standardised formulation was stored at 4°C, -20°C and -80°C and labeling with 99mTc was tested for up to 6 days. The radiochemical purity, chemical impurities, and endotoxin levels were tested. The frozen formulation was tested in swiss mice (n = 3) for biodistribution studies at 4 h. Around 18 ± 2 mCi was injected intravenously in each patient (n = 5) and the image was acquired at 4 h post-injection. Results: The radiochemical purity of the preparation was 98.3 ± 1.4% with a retention time of 16.8 ± 1.5 min as compared to 4.0 ± 0.5 min for free 99mTc. Animal distribution showed highest uptake in liver and dual excretion via hepatobiliary and renal system. [99mTc]Tc-trodat imaging was able to differentiate both caudate and putamen. Conclusions: In-house frozen preparation was advantageous, as it has decreased the chance of manual error as compared to daily make up formulations and economical as compared to commercially available kits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call